\(\int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [187]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 135 \[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {\sqrt [4]{-1} \sqrt {a} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1-i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

[Out]

-(-1)^(1/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d+(-1+I)*arctanh((1+I
)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)/d+tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3641, 21, 3636, 3625, 211, 3680, 65, 223, 209} \[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {\sqrt [4]{-1} \sqrt {a} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1-i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

[In]

Int[Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

-(((-1)^(1/4)*Sqrt[a]*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d) - ((1 - I
)*Sqrt[a]*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + (Sqrt[Tan[c + d*x]]*Sq
rt[a + I*a*Tan[c + d*x]])/d

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3636

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dis
t[2*a, Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Dist[b/a, Int[(b + a*Tan[e + f*x])*(Sqr
t[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3641

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[d*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[1/(a*(m + n - 1)), Int[(a
 + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 2)*Simp[d*(b*c*m + a*d*(-1 + n)) - a*c^2*(m + n - 1) + d*(b*d*m
 - a*c*(m + 2*n - 2))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[
a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1] && NeQ[m + n - 1, 0] && (IntegerQ[n] || IntegersQ[2*m, 2*n])

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\left (\frac {a}{2}+\frac {1}{2} i a \tan (c+d x)\right ) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{a} \\ & = \frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx}{2 a} \\ & = \frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {i \int \frac {\sqrt {a+i a \tan (c+d x)} (i a+a \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx}{2 a}-\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}+\frac {a \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {\left (2 i a^2\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = -\frac {(1-i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}+\frac {a \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = -\frac {(1-i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}+\frac {a \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = -\frac {\sqrt [4]{-1} \sqrt {a} \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {(1-i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.22 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.21 \[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {\frac {i \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}}-\frac {(-1)^{3/4} a \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}+\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

[In]

Integrate[Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((I*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[
Tan[c + d*x]] - ((-1)^(3/4)*a*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[1 + I*Tan[c + d*x]])/Sqrt[a + I*a*Ta
n[c + d*x]] + Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 228 vs. \(2 (108 ) = 216\).

Time = 1.09 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.70

method result size
derivativedivides \(\frac {\left (i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+\ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right ) \left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(229\)
default \(\frac {\left (i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+\ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right ) \left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(229\)

[In]

int((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*(I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d
*x+c)+I))*(I*a)^(1/2)*a+2*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+ln(1/2*(2*I*a*tan(d*x
+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2))*tan(d*x+c)^(1/2)*(a*(1
+I*tan(d*x+c)))^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 479 vs. \(2 (101) = 202\).

Time = 0.25 (sec) , antiderivative size = 479, normalized size of antiderivative = 3.55 \[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} + d \sqrt {-\frac {i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} + 2 \, d \sqrt {-\frac {i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - d \sqrt {-\frac {i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} - 2 \, d \sqrt {-\frac {i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - d \sqrt {-\frac {2 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} + d \sqrt {-\frac {2 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + d \sqrt {-\frac {2 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} - d \sqrt {-\frac {2 i \, a}{d^{2}}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right )}{2 \, d} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/2*(2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*
e^(I*d*x + I*c) + d*sqrt(-I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c)
 + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1) + 2*d*sqrt(-I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I
*c)) - d*sqrt(-I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2
*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1) - 2*d*sqrt(-I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - d*sq
rt(-2*I*a/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x +
2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1) + d*sqrt(-2*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + d*sqrt(-2*I*a
/d^2)*log((sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) +
1))*(e^(2*I*d*x + 2*I*c) + 1) - d*sqrt(-2*I*a/d^2)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)))/d

Sympy [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)*tan(d*x+c)**(3/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*tan(c + d*x)**(3/2), x)

Maxima [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int { \sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0]Warning, replacing 0 by -72, a substitution variable should perhaps be pu
rged.Warnin

Mupad [F(-1)]

Timed out. \[ \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

[In]

int(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(1/2), x)